本文介绍一个智能AI问答系统,通过简单的抓取网站(OpenAI网站为例),使用Embeddings API将抓取的页面转换为嵌入,然后创建一个基本的搜索功能,允许用户询问相关信息

相关技术点:爬虫,文本处理,文本分割,token计算,嵌入,语义搜索

目录:

1Web爬虫相关
2数据预处理
3使用嵌入构建问答系统
4其他

Web爬虫

导入相关库指定爬取目标url

import requestsimport reimport urllib.requestfrom bs4 import BeautifulSoupfrom collections import dequefrom html.parser import HTMLParserfrom urllib.parse import urlparseimport osimport pandas as pdimport tiktokenimport openaiimport numpy as npfrom openai.embeddings_utils import distances_from_embeddings, cosine_similarity# 匹配网址(URL)的字符串HTTP_URL_PATTERN = r'^http[s]{0,1}://.+$'# 爬取的网站domain = "openai.com"full_url = "https://openai.com/"

1 创建一个类--解析HTML获取超链接

class HyperlinkParser(HTMLParser):    def __init__(self):        super().__init__()        # 创建一个列表以存储超链接        self.hyperlinks = []    # 重写HTMLParser的handle_starttag方法以获取超链接    def handle_starttag(self, tag, attrs):        attrs = dict(attrs)        # 如果标签是锚定标签并且具有href属性,则将href属性添加到超链接列表中        if tag == "a" and "href" in attrs:            self.hyperlinks.append(attrs["href"])

2 解析指定url

def get_hyperlinks(url):    try:        # 打开URL并阅读HTML        with urllib.request.urlopen(url) as response:            if not response.info().get('Content-Type').startswith("text/html"):                return []            html = response.read().decode('utf-8')    except Exception as e:        print(e)        return []    # 创建HTML解析器,然后解析HTML以获得超链接    parser = HyperlinkParser()    parser.feed(html)    return parser.hyperlinks

3 过滤超链接(过滤出同一域名的)

def get_domain_hyperlinks(local_domain, url):    clean_links = []    for link in set(get_hyperlinks(url)):        clean_link = None        if re.search(HTTP_URL_PATTERN, link):            # 解析URL并检查域是否相同            url_obj = urlparse(link)            if url_obj.netloc == local_domain:                clean_link = link        # 如果链接不是URL,检查它是否是相对链接        else:            if link.startswith("/"):                link = link[1:]            elif (                    link.startswith("#")                    or link.startswith("mailto:")                    or link.startswith("tel:")            ):                continue            clean_link = "https://" + local_domain + "/" + link        if clean_link is not None:            if clean_link.endswith("/"):                clean_link = clean_link[:-1]            clean_links.append(clean_link)    # 返回同一域内的超链接列表    return list(set(clean_links))

4 开始爬取

def crawl(url):    # 解析URL并获取域    local_domain = urlparse(url).netloc    # 创建一个队列来存储要爬网的URL    queue = deque([url])    # 创建一个集合来存储已经看过的URL(没有重复)    seen = set([url])    # 创建一个目录来存储文本文件    if not os.path.exists("text/"):        os.mkdir("text/")    if not os.path.exists("text/" + local_domain + "/"):        os.mkdir("text/" + local_domain + "/")    # 创建目录来存储csv文件    if not os.path.exists("processed"):        os.mkdir("processed")    # 当队列不为空时,继续搜索    while queue:        # 从队列中获取下一个URL        url = queue.pop()        print(url)  # 用于调试和查看进度        # 将url中的文本保存到<url>.txt文件        with open('text/' + local_domain + '/' + url[8:].replace("/", "_") + ".txt", "w", encoding="UTF-8") as f:            # 使用BeautifulSoup从URL获取文本            soup = BeautifulSoup(requests.get(url).text, "html.parser")            # 获取文本,但删除标签            text = soup.get_text()            # 如果爬虫到达需要JavaScript的页面,它将停止爬行            if ("You need to enable JavaScript to run this app." in text):                print("Unable to parse page " + url + " due to JavaScript being required")            f.write(text)        # 从URL获取超链接,并将它们添加到队列中        for link in get_domain_hyperlinks(local_domain, url):            if link not in seen:                queue.append(link)                seen.add(link)# start crawl....# crawl(full_url)

数据预处理

5 text数据预处理

将文本转换为CSV需要循环遍历先前创建的文本目录中的文本文件。打开每个文件后,删除多余的间距并将修改后的文本附加到列表中。然后,将删除了新行的文本添加到空的Pandas数据框中,并将数据框写入CSV文件

#Step 5 删除text多余间距def remove_newlines(serie):    serie = serie.str.replace('\n', ' ')    serie = serie.str.replace('\\n', ' ')    serie = serie.str.replace('  ', ' ')    serie = serie.str.replace('  ', ' ')    return serie### Step 6 text数据通过df.to_csv()转为csvtexts = []# 获取文本目录中的所有文本文件for file in os.listdir("text/" + domain + "/"):    with open("text/" + domain + "/" + file, "r", encoding="UTF-8") as f:        text = f.read()        # 省略前11行和后4行,然后用空格替换-、_和#update.        texts.append((file[11:-4].replace('-', ' ').replace('_', ' ').replace('#update', ''), text))# 从文本列表创建一个数据框架df = pd.DataFrame(texts, columns=['fname', 'text'])df['text'] = df.fname + ". " + remove_newlines(df.text)df.to_csv('processed/scraped.csv')df.head()

结果示例:

7 使用tiktoken计算tokens

tiktoken是OpenAI开源的一个快速分词工具。它将一个文本字符串(例如“tiktoken很棒!”)和一个编码(例如“cl100k_base”)作为输入,然后将字符串拆分为标记列表(例如["t","ik","token"," is"," great","!"])
文本字符串拆分成tokens: 1该字符串是否太长以至于文本模型无法处理;2 OpenAI API调用的费用(因为使用费用按token计算)。

tokenizer = tiktoken.get_encoding("cl100k_base") #加载编码:第一次运行此方法时,需要连接互联网下载,之后的运行将不需要网络连接df = pd.read_csv('processed/scraped.csv', index_col=0)df.columns = ['title', 'text']# 对文本进行标记化并将标记数保存到新列df['n_tokens'] = df.text.apply(lambda x: len(tokenizer.encode(x)))# 可视化df.n_tokens.hist()

8 将文本拆分

max_tokens = 500def split_into_many(text, max_tokens=max_tokens):    # 分割文本为句子并计算token    sentences = text.split('. ')    n_tokens = [len(tokenizer.encode(" " + sentence)) for sentence in sentences]    chunks = []    tokens_so_far = 0    chunk = []    for sentence, token in zip(sentences, n_tokens):        if tokens_so_far + token > max_tokens:            chunks.append(". ".join(chunk) + ".")            chunk = []            tokens_so_far = 0        if token > max_tokens:            continue        chunk.append(sentence)        tokens_so_far += token + 1    if chunk:        chunks.append(". ".join(chunk) + ".")    return chunksshortened = []for row in df.iterrows():    if row[1]['text'] is None:        continue    if row[1]['n_tokens'] > max_tokens:        shortened += split_into_many(row[1]['text'])    else:        shortened.append(row[1]['text'])df = pd.DataFrame(shortened, columns=['text'])df['n_tokens'] = df.text.apply(lambda x: len(tokenizer.encode(x)))df.n_tokens.hist()

9 文本嵌入(需要大约3-5分钟)

df['embeddings'] = df.text.apply(    lambda x: openai.Embedding.create(input=x, engine='text-embedding-ada-002')['data'][0]['embedding'])df.to_csv('processed/embeddings.csv')df.head()# 将嵌入转换为NumPy数组df = pd.read_csv('processed/embeddings.csv', index_col=0)df['embeddings'] = df['embeddings'].apply(eval).apply(np.array)df.head()

使用嵌入构建问答系统

10 语义搜索,返回top5

def create_context(        question, df, max_len=1800, size="ada"):    """    Create a context for a question by finding the most similar context from the dataframe    """    q_embeddings = openai.Embedding.create(input=question, engine='text-embedding-ada-002')['data'][0]['embedding']    #余弦距离比较数字向量(嵌入的搜索)    df['distances'] = distances_from_embeddings(q_embeddings, df['embeddings'].values, distance_metric='cosine')    returns = []    cur_len = 0    for i, row in df.sort_values('distances', ascending=True).iterrows():        cur_len += row['n_tokens'] + 4        if cur_len > max_len:            break        returns.append(row["text"])    return "\n\n###\n\n".join(returns)

11 开始实现问答

def answer_question(        df,        model="text-davinci-003",        question="Am I allowed to publish model outputs to Twitter, without a human review?",        max_len=1800,        size="ada",        debug=False,        max_tokens=150,        stop_sequence=None):    """    Answer a question based on the most similar context from the dataframe texts    """    context = create_context(        question,        df,        max_len=max_len,        size=size,    )    if debug:        print("Context:\n" + context)        print("\n\n")    try:        response = openai.Completion.create(            prompt=f"Answer the question based on the context below, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext: {context}\n\n---\n\nQuestion: {question}\nAnswer:",            temperature=0,            max_tokens=max_tokens,            top_p=1,            frequency_penalty=0,            presence_penalty=0,            stop=stop_sequence,            model=model,        )        return response["choices"][0]["text"].strip()    except Exception as e:        print(e)        return ""print(answer_question(df, question="What day is it?", debug=False))print(answer_question(df, question="What is our newest embeddings model?"))

结果示例:

其他

为了快速搜索多个矢量,建议使用矢量数据库 ,以下是一些推荐

地址:platform.openai.com/docs/guides/embeddings/limitations-risks

推荐阅读

Gpt进阶(四):最简方式搭建自己的AI知识库(FastGPT+宝塔)
Gpt进阶(三):搭建本地的chatpdf(原理,文档处理,语义搜索等),详解爆肝3天,正式上线AI免费学习网站-零栈